Geniposide Prevents Hypoxia/Reoxygenation-Induced Apoptosis in H9c2 Cells: Improvement of Mitochondrial Dysfunction and Activation of GLP-1R and the PI3K/AKT Signaling Pathway.

نویسندگان

  • You-Qin Jiang
  • Guang-Lei Chang
  • Ying Wang
  • Dong-Ying Zhang
  • Li Cao
  • Jian Liu
چکیده

BACKGROUND/AIMS Myocardial ischemia/reperfusion injury is a major cause of morbidity and mortality associated with coronary heart disease. Many studies have demonstrated that natural products are promising chemotherapeutic drugs counteracting the loss of cardiomyocytes. Thus, the purpose of the present study was to investigate the effects of geniposide, a traditional Chinese herb extract from Gardenia jasminoides J. Ellis, on cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R) in H9c2 cells, and their underlying mechanisms. METHODS Cell viability and apoptosis ratio were assessed using the cell counting kit-8 assay and Annexin V/propidium iodide (PI) staining. The concentrations of lactate dehydrogenase (LDH), intracellular total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were detected by microplate reader. The production of reactive oxygen species/reactive nitrogen species (ROS/RNS), the level of mitochondrial calcium, and mitochondrial membrane potential depolarization were measured by confocal laser scanning microscopy. Mitochondrial morphology was visualized using transmission electron microscopy. The expressions of Bcl-2 mRNA and Caspase-3 mRNA were measured by reverse transcription-polymerase chain reaction (RT-PCR). The protein levels of cleaved caspase-3, Bcl-2, Bax, AKT, p-AKTserine473, cytochrome-c were detected by western bloting. RESULTS Geniposide pretreatment increased cell viability, decreased LDH levels in the supernatant, and inhibited cardiomyocyte apoptosis caused by H/R. Furthermore, geniposide reversed mitochondrial dysfunction by decreasing oxidative stress products (ROS/RNS and MDA), increasing anti-oxidative enzyme (T-SOD) level, improving mitochondrial morphology, attenuating mitochondrial calcium overload and blunting depolarization of mitochondrial membrane. Moreover, geniposide pretreatment increased Bcl-2 level and decreased Bax level, thus enhancing the Bcl-2/Bax ratio. Consistent with the above result, Bcl-2 mRNA expression was upregulated and caspase-3 mRNA expression was downregulated by geniposide. In addition, geniposide decreased the protein expression of cleaved caspase-3 and cytochrome-c and increased the level p-AKTserine473. The protective effects of geniposide were partially reversed by glucagon-like pepitide-1 receptor antagonist exendin-(9-39) and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002. CONCLUSIONS Our results suggest that geniposide pretreatment inhibits H/R-induced myocardial apoptosis by reversing mitochondrial dysfunction, an effect in part due to activation of GLP-1R and PI3K/AKT signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bauhinia championii Flavone Attenuates Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes by Improving Mitochondrial Dysfunction.

This study aimed to determine the effects of Bauhinia championii flavone (BCF) on hypoxia-reoxygenation (H/R) induced apoptosis in H9c2 cardiomyocytes and to explore potential mechanisms. The H/R model in H9c2 cardiomyocytes was established by 6 h of hypoxia and 12 h of reoxygenation. Cell viability was detected by CCK-8 assay. Apoptotic rate was measured by Annexin V/PI staining. Levels of mit...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 39 1  شماره 

صفحات  -

تاریخ انتشار 2016